CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

1 (a) (gravitational) force proportional to product of masses and inversely proportional to square of separation
(b) gravitational force provides the centripetal force
either $G M m / x^{2}=m x \omega^{2}$ or $m v^{2} / x$
either $\omega=2 \pi / T$ or $v=2 \pi x / T$ and working to $G M=4 \pi^{2} x^{3} / T^{2}$
(c) either use of gradient of graph or line through origin so can use single point or line shown extrapolated to origin
gradient $=\left(4.5 \times 10^{14}\right) / 0.35$
$6.67 \times 10^{-11} \times M=4 \pi^{2} \times\left(4.5 \times 10^{14} \times 10^{9}\right) /\left(0.35 \times\{24 \times 3600\}^{2}\right)$
correct conversion for km^{3} and power of 10
C1
correct conversion for day ${ }^{2}$
C1
$M=1.02 \times 10^{26} \mathrm{~kg}$ A1

2 (a) total volume of molecules negligible compared to that of containing vessel no intermolecular forces molecules in random motion time of collision small compared with the time between collisions large number of molecules any two
(b) in a real gas there is a range of velocities or must take the average of v^{2}
(c) (i) either $p=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$

$$
\begin{array}{ll}
\text { or } 1.0 \times 10^{5}=\frac{1}{3} \times 1.2 \times\left\langle c^{2}\right\rangle & \mathrm{C} 1 \\
\left\langle c^{2}\right\rangle= & 2.5 \times 10^{5} \\
c_{\text {r.m.s. }}= & 500 \mathrm{~m} \mathrm{~s}^{-1}
\end{array}
$$

(ii) $\left.T \propto<c^{2}\right\rangle$

$$
\begin{aligned}
\left\langle c^{2}\right\rangle & =2.5 \times 10^{5} \times 480 / 300 \\
& =4.0 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2} \text { (allow ECF from (c)(i)) }
\end{aligned}
$$

3 (a) same temperature B1 no (net) transfer of thermal energy (between the bodies)
(b) (i) 41.3 K
(ii) 330.4 K

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

(c) $\Delta E_{K}=\frac{3}{2} \times 1.9 \times 60$

$$
=171 \mathrm{~J}
$$

work done $=p \Delta V$

$$
\begin{aligned}
& =1.2 \times 10^{5} \times 950 \times 10^{-6} \\
& =114 \mathrm{~J}
\end{aligned}
$$

C1
C1
thermal energy $=114+171$

$$
=285(290) \mathrm{J}
$$

A1

4 (a) acceleration/force proportional to distance from a fixed point or displacement
M1
either acceleration/force and displacement in opposite directions
or acceleration/force (always) directed towards a fixed point/mean position/equilibrium position

A1
(b) $h \rho g=M g / A \quad$ B1
$h \times 790 \times 4.9 \times 10^{-4}=70 \times 10^{-3}$ leading to $h=0.18 \mathrm{~m}$ or 18 cm
A1
(c) (i) 1. $\omega^{2}=\left(790 \times 4.9 \times 10^{-4} \times 9.81\right) /\left(70 \times 10^{-3}\right)$

$$
\omega=7.37\left(\mathrm{rad} \mathrm{~s}^{-1}\right)
$$

period $(=2 \pi / \omega)=0.85 \mathrm{~s}$
C1
$t_{1}=0.43 \mathrm{~s} \quad \mathrm{~A} 1$
2. $t_{3}=1.28 \mathrm{~s}$ (allow 2 s. f.)

A1
(ii) energy of peak $=1 / 2 M \omega^{2} x_{0}{ }^{2} \quad \mathrm{~B} 1$ change $=1 / 2 \times 70 \times 10^{-3} \times 54.25\left\{\left(2.2 \times 10^{-2}\right)^{2}-\left(1.0 \times 10^{-2}\right)^{2}\right\} \quad$ C1 $=7.3 \times 10^{-4} \mathrm{~J}$ A1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

5 (a) charges in metal do not move
B1
no (resultant) force on charges so no (electric) field B1 (allow $1 / 2$ for "no field inside sphere")
(b) either average field strength

$$
=1 / 2(28+54) \mathrm{NC}^{-1} \quad \mathrm{C} 1
$$

average force $\quad=8.5 \times 10^{-9} \times 1 / 2(28+54) \quad \mathrm{C} 1$
change in potential energy $=3.49 \times 10^{-7} \times 2.0 \times 10^{-2}$
$=7.0 \times 10^{-9} \mathrm{~J}$ (allow 1 s.f.)
(allow range 54 ± 1)
or (for a point charge) $V=E x$

$$
\begin{equation*}
\Delta V=\left(54 \times 5.0 \times 10^{-2}\right)-\left(28 \times 7.0 \times 10^{-2}\right) \tag{C1}
\end{equation*}
$$

$$
\text { change in potential energy }=8.5 \times 10^{-9} \times(2.70-1.96)
$$

$$
\begin{equation*}
=6.3 \times 10^{-9} \mathrm{~J} \text { (allow } 1 \text { s.f.) } \tag{A1}
\end{equation*}
$$

(allow range 54 ± 1)
or $\quad \Delta V$ is area under curve
$\Delta V=0.74 \mathrm{~V}$
change in potential energy $=8.5 \times 10^{-9} \times 0.74$
$=6.3 \times 10^{-9} \mathrm{~J}$ (allow 1 s.f.)
(allow range 0.70 to 0.84)

6 (a) magnetic fields are equal in magnitude/strength/flux density M1
magnetic fields are opposite in direction M1
fields superpose/add/cancel to give zero/negligible resultant field A1
(b) core causes increase in magnetic flux in the solenoid/induced poles in core or field induced in core
changing flux threads/cuts the turns on the solenoid
(by Faraday's law) an e.m.f. is induced in the solenoid A1
by Lenz's law, this e.m.f. opposes the battery e.m.f. A1

7 (a) (i) $V_{0}(=14 \sqrt{2})=19.8(20) \vee$ A1
(ii) $\omega(=2 \pi \times 750)=4700 \mathrm{rads}^{-1}$
(b) large amount of charge required to charge capacitor
$I=Q / t$, so large current

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

8 (a) $h c / \lambda=\Phi+E_{\text {MAX }} \quad$ M1
$h=$ Planck constant, $c=$ speed of light/e.m. radiation A1
(b) (i) gradient of line is hc h and c are both constants
(ii) $\Phi=2.28 \times 1.6 \times 10^{-19}$

$$
=3.65 \times 10^{-19}(\mathrm{~J})
$$

$$
h c / \lambda_{0}=3.65 \times 10^{-19}
$$

$$
\lambda_{0}=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(3.65 \times 10^{-19}\right) \quad \text { C1 }
$$

$$
=5.45 \times 10^{-7} \mathrm{~m}
$$

9 (a) energy required to separate the nucleons (in a nucleus) or energy required to separate the protons and neutrons in a nucleus
(or energy released when nucleons combine (to form a nucleus)/energy released when protons and neutrons combine to form a nucleus)
either completely or to infinity A1
(either free protons and neutrons or from infinity)
(b) (i) either different forms of same element or nuclei having same number of protons with different numbers of neutrons
(ii) 1784 MeV (accept min. 3 s.f.)
7.57 MeV
(c) (i) $\lambda=\ln 2 /\left(7.1 \times 10^{8} \times 365 \times 24 \times 3600\right)=3.1 \times 10^{-17} \mathrm{~s}^{-1}$
(c)
(ii) $A=\lambda N$

$$
\begin{equation*}
5000=3.1 \times 10^{-17} \times N \tag{C1}
\end{equation*}
$$

$N=1.61 \times 10^{20}$
mass $=235 \times\left(1.61 \times 10^{20}\right) /\left(6.02 \times 10^{23}\right)$ C1

$$
=0.063 \mathrm{~g} \text { (accept min. } 2 \text { s.f. })
$$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

Section B

10 (a) correct LED symbol B1
separately connected between $\mathrm{V}_{\text {out }}$ and earth with opposite polarities M1
diode B 'pointing' from $V_{\text {out }}$ to earth A1(ignore protective resistors)
(b) diode in $\mathrm{V}_{\text {out }}$ line M1
diode 'pointing' towards $V_{\text {out }}$ from earth A1
relay coil connected between $V_{\text {out }}$ and earth M1
switch connected across lamp A1(if a diode is placed across the relay it must point down otherwise max. 2/4;one diode but wrong direction max. 3/4)
11 (a) e.g. scattering (in metal)
non-parallel beam (not just "A closer than B") reflection (from metal)
diffraction in the metal/lattice
any two B2
(b) (i) 1. ratio $=e^{\mu x}$
$=\exp (0.27 \times 4.0)$ C1

$$
\text { = } 2.94 \text { (2.9) }
$$ A1

2. ratio $=\exp (0.27 \times 2.5) \times \exp (3.0 \times 1.5)$ C1

$$
\begin{aligned}
& =1.96 \times 90 \\
& =177(180)
\end{aligned}
$$A1

[2]
(do not penalise unit error more than once)
(ii) each ratio gives measure of transmission B1
ratios (in (i)) very different so good contrast B112 (a) (i) serial-to-parallel converterB1
(ii) digital-to-analogue converter or DAC B1
(iii) (audio) amplifier or AF amplifier B1
A1 [1](b) (i) 4
(ii) 1011 A1[1]
(c) correct levels at 0.25 ms intervals $0,8,11,10,15$ A1
and 7,4 A1
series of steps, each of depth 0.25 ms M1
voltage levels shown in correct intervals A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	43

13 (a) advantage: e.g. shorter time delay greater coverage over a long time B1
disadvantage: e.g. satellite needs to be tracked more satellites for (continuous) coverage/communication (any sensible suggestions)
(b) (i) frequencies linking Earth with satellite B1

6 GHz is uplink frequency $\}$
4 GHz is downlink frequency $\}$ (allow vice versa) B1
(ii) either signal from Earth to satellite is attenuated greatly or downlink must be amplified greatly before transmission B1
downlink would swamp uplink unless frequencies are different B1

